Galois as Permutation Groups

نویسنده

  • KEITH CONRAD
چکیده

Writing f(X) = (X− r1) · · · (X− rn), the splitting field of f(X) over K is K(r1, . . . , rn). Each σ in the Galois group of f(X) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation of the subscripts 1, 2, . . . , n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galois Groups as Permutation Groups

Writing f(T ) = (T − r1) · · · (T − rn), the splitting field of f(T ) over K is K(r1, . . . , rn). Each σ in the Galois group of f(T ) over K permutes the ri’s since σ fixes K and therefore f(r) = 0⇒ f(σ(r)) = 0. The automorphism σ is completely determined by its permutation of the ri’s since the ri’s generate the splitting field over K. A permutation of the ri’s can be viewed as a permutation ...

متن کامل

Binary Relations and Permutation Groups

We discuss some new properties of the natural Galois connection among set relation algebras, permutation groups, and first order logic. In particular, we exhibit infinitely many permutational relation algebras without a Galois closed representation, and we also show that every relation algebra on a set with at most six elements is Galois closed and essentially unique. Thus, we obtain the surpri...

متن کامل

Bivariate Factorizations Connecting Dickson Polynomials and Galois Theory

In his Ph.D. Thesis of 1897, Dickson introduced certain permutation polynomials whose Galois groups are essentially the dihedral groups. These are now called Dickson polynomials of the first kind, to distinguish them from their variations introduced by Schur in 1923, which are now called Dickson polynomials of the second kind. In the last few decades there have been extensive investigations of ...

متن کامل

Double Transitivity of Galois Groups in Schubert Calculus of Grassmannians

We investigate double transitivity of Galois groups in the classical Schubert calculus on Grassmannians. We show that all Schubert problems on Grassmannians of 2and 3-planes have doubly transitive Galois groups, as do all Schubert problems involving only special Schubert conditions. We use these results to give a new proof that Schubert problems on Grassmannians of 2-planes have Galois groups t...

متن کامل

About Absolute Galois Group

Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension of rationals is very difficult concept to define. The goal of classical Langlands program is to understand the Galois group of algebraic numbers as algebraic extension of rationals Absolute Galois Group (AGG) through its representations. Invertible adeles -ideles define Gl1 which can be shown to be isomorph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013